

# Alleima® Alloy 400

## Tube and pipe, seamless

### Datasheet

Alleima® Alloy 400 is a copper-nickel alloy with the following characteristics:

- High strength and toughness
- Good bendability
- Excellent corrosion resistance in many environments

### Standards

- UNS: NO4400

- W.Nr.: 2.4360

#### **Product standards**

- ASTM B163, ASTM B165-05

### Chemical composition (nominal)

#### Chemical composition (nominal) %

| С    | Si   | Mn | S      | Ni  |
|------|------|----|--------|-----|
| ≤0.3 | ≤0.5 | ≤2 | ≤0.024 | ≥63 |

Others

Cu=30

Fe<2.5

### **Applications**

Alleima® Alloy 400 is used in a wide variety of applications in the chemical, nuclear and oil and gas industries, including heat-exchangers, pumps and valves, reboiler tubes and control lines.

### Forms of supply

Alleima® Alloy 400 tubing is supplied in the annealed condition in lengths of 6 m.

### Mechanical properties

At 20°C (68°F)

| Proof strength       |     | Tensile strength |     | Elong.          |
|----------------------|-----|------------------|-----|-----------------|
| R <sub>p0.2</sub> 1) |     | R <sub>m</sub>   |     | A <sup>2)</sup> |
| MPa                  | ksi | MPa              | ksi | %               |
| ≥195                 | ≥28 | ≥480             | ≥70 | ≥40             |

 $<sup>1</sup> MPa = N/mm^2$ 

### Physical properties

#### **Density**

8.83 g/cm<sup>3</sup>, 0.32 lb/in<sup>3</sup>

### Thermal conductivity

21.8 W.m -1.°K-1

### Specific heat capacity

427 J.kg-1.°K-1

#### Thermal expansion

13.9 mm/m/°C

#### Modulus of elasticity

173 GPa

#### **Electrical Resistivity**

 $5.47 \,\mu\Omega/cm$ 

**Disclaimer:** Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Alleima materials.



<sup>1)</sup>  $R_{p0.2}$  and  $R_{p1.0}$  correspond to 0.2% offset and 1.0% offset yield strength, respectively.

<sup>2)</sup> Based on  $L_0$  = 5.65  $\sqrt{S_0}$  where  $L_0$  is the original gauge length and  $S_0$  the original cross-section area.