Datasheet last updated 2024/1/11 0010:32:08 (supersedes all previous editions)

Alleima

Alleima® 254 SMO

Tube and pipe, seamless

Datasheet

Alleima® 254 SMO is a high-alloy austenitic stainless steel developed for use in seawater and other aggressive chloride-bearing media. The steel is characterized by the following properties:

- Excellent resistance to pitting and crevice corrosion, PRE = ≥42.5*
- High resistance to general corrosion
- High resistance to stress corrosion cracking
- Higher strength than conventional austenitic stainless steels
- Good weldability

*The PRE is defined as, in weight-%, PRE = %Cr + 3.3 x %Mo + 16 x %N

Trademark information: 254 SMO is a trademark owned by Outokumpu OY.

Standards

- UNS: S31254
- EN Number: 1.4547
- EN Name: X1CrNiMoCuN20-18-7
- W.Nr.: 1.4529**
- AFNOR: Z1 CNDU 20.18.06AZ*
- * Obsolete. Replaced by EN.
- ** Nearest equivalent grade.

Product standards

Seamless tube and pipe: ASTM A269, A213, A312, NFA 49-217, EN 10216-5

Norsok MDS R11/R18, IOGP S-563 MDS IR111/111S/IR118/IR118S

Welded tube and pipe: ASTM A249, A269, A312, A358, A409

Fittings: ASTM A182

Bar: ASTM A276, A479, EN 10088-3

- Forged products: ASTM A473

Approvals

UNS S31254 (Alleima® 254 SMO) in the form of seamless pipe has been approved by the American Society of Mechanical Engineers (ASME) for use according to ASME Boiler and Pressure Vessel Code section VIII, div. 1. However, there is no approval for UNS S31254 in the form of seamless tube, but according to the ASME paragraph UG-15 it is allowed to use the design values for seamless pipe according to ASME section VIII, div. 1 also for seamless tube

NACE MR 0175 (sulphide stress cracking resistant material for oil field equipment).

Chemical composition (nominal)

Chemical composition (nominal) %

С	Si	Mn	Р	S	Cr	Ni	Мо	N	Cu
≤0.020	≤0.80	≤1.00	≤0.030	≤0.010	20	18	6.1	0.20	0.7

Applications

Alleima 254 SMO is used in the following applications:

- Equipment for handling of seawater, such as seawater cooling, cooling water pipes, ballast water systems, firefighting systems etc.
- Hydraulic and instrumentation tubing
- Equipment in pulp bleaching plants
- Components in gas cleaning systems
- Tanks and pipelines for chemicals with high halide contents

Trademark information: 254 SMO is a trademark owned by Outokumpu OY.

Corrosion resistance

In solutions containing halides such as chloride and bromide ions, conventional stainless steels can be readily attacked by local corrosion in the form of pitting corrosion, crevice corrosion or stress corrosion cracking (SCC). In acid environments, the presence of halides also accelerates general corrosion.

General corrosion

In pure sulphuric acid, Alleima 254 SMO is much more resistant than ASTM TP316, and in naturally aerated sulphuric acid containing chloride ions Alleima 254 SMO exhibits higher resistance than '904L', see Figure 2.

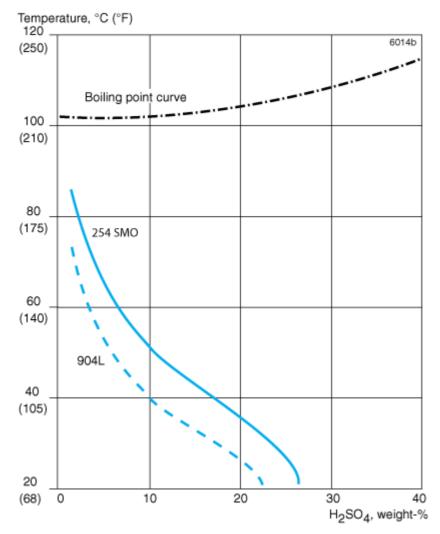


Figure 2. Isocorosion diagram 0.1 mm/year (4mpy) in naturally aerated sulphuric acid containing 2000 ppm chloride ions.

Stress corrosion cracking (SCC)

Ordinary austenitic steels of the ASTM TP304 and TP316 type are prone to stress corrosion cracking (SCC) in chloride-containing solutions at temperatures exceeding about 60°C (140°F). For the austenitic steels, resistance to SCC increases with higher nickel and molybdenum contents. The tables below show the results of two accelerated tests, clearly demonstrating that Alleima 254 SMO has a very good resistance to SCC.

Stress corrosion cracking tests in boiling 25% NaCl solution, pH=1.5. U-bend specimens.

Grade	Time to failure	Remark
ASTM TP316	<150 h	Pitting
'904L'	No failure (1000 h)	Crevice corrosion
Sandvik 254 SMO	No failure (1000 h)	No attack

Stress corrosion cracking tests. Drop evaporation method*. Stress: 0.9xR_{p0.2}

Grade	Time to failure hours
ASTM TP316	105
'904L'	225

Datasheet last updated 2024/1/11 [[10:32:08 (supersedes all previous editions)

 * A 0.1 M NaCl solution is allowed to drop slowly onto an electrically heated tensile test specimen at 300 $^{\circ}$ C (570 $^{\circ}$ F).

Intergranular corrosion

Alleima 254 SMO has a very low carbon content. This means that there is very little risk of carbide precipitation during heating, for example when welding. The steel passes the Strauss test (ASTM A262, practice E) even after sensitizing for one hour at 600–1000°C (1110–1830°F).

However, due to the high alloying content of the steel, inter-metallic phases can precipitate at the grain boundaries in the temperature range 600–1000°C (1110–1830°F). These precipitations do not involve any risk of intergranular corrosion in the environments in which the steel is intended to be used. Thus, welding can be carried out without any risk of intergranular corrosion.

Pitting corrosion

The pitting and crevice corrosion resistance of stainless steel is primarily determined by the content of chromium, molybdenum and nitrogen. Manufacture and fabrication, e.g. welding, are also of vital importance for the actual performance in service. A parameter for comparing the resistance to pitting in chloride environments is the PRE number (Pitting Resistance Equivalent). The PRE is defined as, in weight-%, PRE = %Cr + $3.3 \times %$ Mo + $16 \times %$ N

PRE-value for Alleima 254 SMO = ≥42.5.

The results of laboratory determination of the critical pitting temperature (CPT) in 3 % NaCl are shown in Figure 3, where it can be seen that Alleima 254 SMO possesses very good resistance in water containing chlorides. Alleima 254 SMO is, therefore, a suitable material for use in seawater.

Crevice corrosion

The weak point of conventional stainless steels is their limited resistance to crevice corrosion. In seawater, for example, there is a considerably greater risk of crevice corrosion under gaskets, deposits or fouling. Tests in natural seawater at 60°C (140°F) have shown that Alleima 254 SMO can be exposed for prolonged periods without suffering crevice corrosion. Figure 4 shows the results of accelerated crevice corrosion tests.

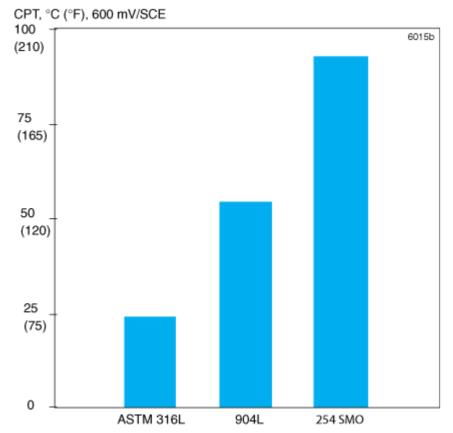


Figure 3. Critical pitting temperature (CPT) in 3% NaCl, 600 mV/SCE.

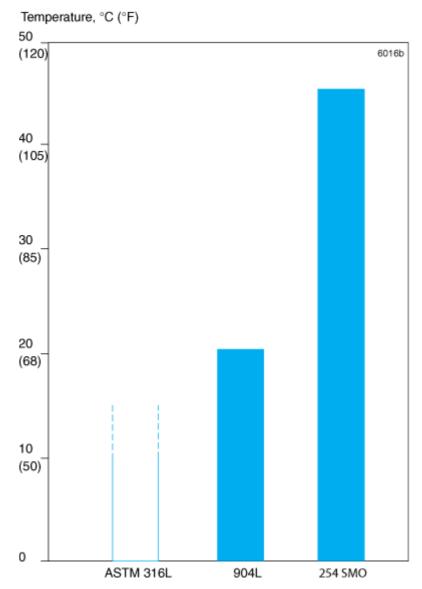


Figure 4. Critical crevice corrosion temperature in FeCl₃ for Sandvik 254 SMO, AISI 316L and 904L. According to ASTM G-48.

Fabrication

Avoid abrasion against copper/copper alloys or other similar metals which, if present in metallic form, can cause cracks during subsequent welding, hot processing or heat treatment.

Bending

The excellent formability of Alleima 254 SMO permits cold bending to very tight bending radii. Annealing is not normally necessary after cold bending.

Machining

Alleima 254 SMO is a high alloyed austenitic stainless steel and thus tougher inserts in metal cutting are needed than is the case for lower alloyed austenitic grades. When machining Alleima 254 SMO considerably lower cutting speeds are recommended compared to the grades Sanmac 304/304L and Sanmac 316/316L, which have improved machinability.

Forms of supply

Seamless tube and pipe are supplied in dimensions up to 230 mm (9.06 in.) outside diameter. The delivery condition is either solution annealed and white pickled, or solution annealed in a bright annealing process.

Other forms of supply

Welded tube and pipe Fittings and flanges Bar steel Forged products Cast products

Heat treatment

The tubes are delivered in heat treated condition. If additional heat treatment is needed due to further processing the following is recommended.

Solution annealing

1150-1200°C (2100-2190°F), quenching in water. Thin-walled tubes min. 1130°C (2060°F), quenching in air/water.

Mechanical properties

The following figures apply to solution annealed condition seamless tube and pipe.

Metric units, at 20°C

Wall thickness	Proof stren	gth	Tensile strength	Elong	-	Hardness
	R _{p0.2} a)	R _{p1.0} a)	R _m	A ^{b)}	A _{2"}	HRB
mm	MPa	MPa	MPa	%	%	
<5	≥310	≥340	675-850	≥35	≥35	≤96
>5	≥310	≥340	655-850	≥35	≥35	≤96

 $1 MPa = 1 N/mm^2$

Imperial units, at 68°F

Wall thickness	Proof stren	gth	Tensile strength	Elon	g.	Hardness
	R _{p0.2} a)	R _{p1.0} a)	R _m	A ^{b)}	A _{2"}	HRB
inch	ksi	ksi	ksi	%	%	
<0.187	≥45	≥49	98-123	≥35	≥35	≤96
>0.187	≥45	≥49	98-123	≥35	≥35	≤96

- a) $R_{p0.2}$ and $R_{p1.0}$ correspond to 0.2% offset and 1.0% offset yield strength, respectively.
- b) Based on $L_0 = 5.65 \sqrt{S_0}$ where L_0 is the original gauge length and S_0 the original cross-section area.

Impact strength

Due to its austenitic microstructure, Alleima 254 SMO has very good impact strength both at room temperature and at cryogenic temperatures.

Tests have demonstrated that the steel fulfils the requirements (60 J (44 ft-lb) at -196 $^{\rm o}$ C (-320 $^{\rm o}$ F)) according to the European standards EN 13445-2 (UFPV-2) and EN 10216-5.

At high temperatures

Intermetallic phases are precipitated within the temperature range of 600–1000°C (1110–1830°F). Therefore, the steel should not be exposed to these temperatures for prolonged periods.

Metric units

Temperature	Proof strength		
°C	R _{p0.2}	R _{p1.0}	
	MPa	MPa	
	min.	min.	
100	230	270	
200	190	225	
300	170	200	
400	160	190	
500	148	180	

Imperial units

Temperature	Proof strength	
°F	R _{p0.2}	R _{p1.0}
	ksi	ksi
	min.	min.
200	34	40
400	27	32
600	24	29
700	24	28
900	22	26

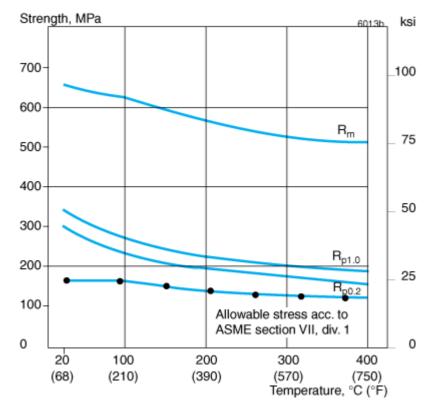


Figure 1. Strength values (min. values) for Sandvik 254SMO and allowable stress according to ASME Boiler and Pressure Vessel Code section VIII, div. 1.

Physical properties

Density: 8.0 g/cm^3 , 0.29 lb/in^3

Thermal conductivity

Temperature, °C	W/m °C	Temperature, ^o F	Btu/ft h °F
20	10	68	6
100	12	200	7
200	14	400	8
300	16	600	9.5
400	18	800	10.5
500	20	1000	11.5
600	21	1200	12.5
700	23	1300	13

Specific heat capacity

Temperature, °C	J/kg °C	Temperature, °F	Btu/ft h °F
20	485	68	0.12
100	510	200	0.12
200	535	400	0.13

300	565	600	0.14
400	585	800	0.14
500	600	1000	0.14
600	615	1200	0.15
700	625	1400	0.15

Thermal expansion, mean values in temperature ranges (x10⁶)

Temperature, °C	Per °C	Temperature, °F	Per °F
30–100	16	86–200	9
30–200	16	86–400	9
30–300	16.5	86–600	9
30–400	16.5	86–800	9.5
30–500	17	86–1000	9.5
30–600	17	86–1200	9.5
30–700	17.5	86–1300	10

Modulus of elasticity, (x103)

Temperature, °C	MPa	Temperature, °F	ksi
20	195	68	28.3
100	190	200	27.6
200	182	400	27.5
300	174	600	25.1
400	166	800	23.8
500	158	1000	22.5

Welding

The weldability of Alleima 254 SMO is good. Suitable methods of fusion welding are manual metal-arc welding (MMA/SMAW) and gas-shielded arc welding, with the TIG/GTAW method as first choice.

In common with all fully austenitic stainless steels, Alleima 254 SMO has low thermal conductivity and high thermal expansion. Welding plans should therefore be carefully selected in advance, so that distortions of the welded joint are minimized. If residual stresses are a concern, solution annealing can be performed after welding.

For Alleima 254 SMO, heat-input of <1.5 kJ/mm and interpass temperature of <100°C (210°F) are recommended. A string bead welding technique should be used.

Nickel alloys with high molybdenum and chromium must be used as filler metals to have good corrosion resistance in the as-welded condition.

Recommended filler metals

TIG/GTAW or MIG/GMAW welding

ISO 18274 S Ni 6625/AWS A5.14 ERNiCrMo-3 (e.g. Exaton Ni60)

ISO 18274 S Ni 6059/AWS A5.14 ERNiCrMo-13 (e.g. Exaton Ni59)

MMA/SMAW welding

ISO 14172 E Ni 6625/AWS A5.11 ENiCrMo-3 (e.g. Exaton Ni60)

ISO 14172 E Ni 6059/AWS A5.11 ENiCrMo-13 (e.g. Exaton Ni59)

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Alleima materials.

